El blog de franz
  • Cursos SIG
  • ¿Preguntar?
  • Secciones
    • SIG
    • Info
    • Geek
    • Forestal
  • Más
    • Obtener certificado SIG
    • Mapa de Profesionales SIG
    • Convertir UTM Geográficas
    • Calculadora de distancias
    • Localizador de IPs
    • Frases
    • Foro
    • Reglas
    • Donar
  • Acerca
  • Contacto
No Result
View All Result
  • Cursos SIG
  • ¿Preguntar?
  • Secciones
    • SIG
    • Info
    • Geek
    • Forestal
  • Más
    • Obtener certificado SIG
    • Mapa de Profesionales SIG
    • Convertir UTM Geográficas
    • Calculadora de distancias
    • Localizador de IPs
    • Frases
    • Foro
    • Reglas
    • Donar
  • Acerca
  • Contacto
No Result
View All Result
El blog de franz
No Result
View All Result

Estrategias de muestreo en la interpolación

by franzpc
marzo 27, 2016
Reading Time: 3 mins read
0

La estrategia de muestreo que se utiliza para recopilar datos puede tener un impacto en su capacidad para estimar el valor de un atributo de un lugar desconocido, sobre todo si la muestra que se utiliza para la interpolación no incluye lugares de alta variabilidad. Aunque el muestreo sea exhaustivo (censo o tomar una muestra en todos los lugares posibles) asegura puntos de muestreo en lugares con cambios rápidos, pero puede ser un enorme desperdicio de recursos si el área de estudio contiene lugares con pocos cambios, es necesario saber si en realidad se debe ir al campo para recoger datos. Por esta razón, nos centraremos en la discusión de estrategias para el muestreo no exhaustivo.

Las estrategias de muestreo, pueden ser sistemáticas o aleatorias. Una muestra sistemática comienza en un lugar específico y luego coloca adicionales adicionales que están a cierta distancia definida desde el punto de partida (por ejemplo, cada cien metros), que resulta en una malla regular de puntos de muestreo. También es posible definir sistemáticamente líneas (transectos) o áreas (cuadrantes) de cualquier tipo de estrategia de muestreo. Aunque este tipo de muestreo es uno de los más fáciles de poner en práctica, y asegura una distribución uniforme de puntos de muestra a través del área de interés, hay dos principales desventajas de utilizar este método. La primera es que si hay algún tipo de marcada periodicidad en el atributo que está trabajando (por ejemplo, árboles espaciados regularmente que fueron plantadas en hileras), y esta periodicidad no coincide con el intervalo de muestreo, es posible que la interpolación a partir de esta muestra perdería el patrón completo y generar una cantidad sustancial de error. La segunda desventaja es que puede ser muy ineficiente, mediante la recopilación de un gran número de muestras en las zonas con poca variación en el atributo en el que está interesado. Dada la frecuencia es alto el costo (en términos de tiempo y dinero) para colectar los datos en el campo, es importante tratar de maximizar el valor de cada punto de muestreo.

Muestreo sistemático.
El muestreo sistemático simple donde los puntos se colectan en intervalos regularmente espaciados. Se requieren dos piezas de información para crear este tipo de muestra: una ubicación de inicio y un intervalo de muestreo.

Una forma de evitar cualquier sesgo que pueda ser introducido en la muestra a través de un muestreo sistemático es utilizar una estrategia de muestreo aleatorio. En la versión más simple de muestreo aleatorio, un número predeterminado de puntos se selecciona dentro de un área de estudio en particular. Estos lugares son elegidos al azar mediante la asignación de números a todos los puntos posibles dentro del área de interés, y luego elegir los números aleatorios usando un generador de números aleatorios para determinar qué puntos se utilizan en la muestra. Aunque esta estrategia generalmente evita el sesgo, depende en gran medida del número de muestras y la variabilidad en la zona de estudio. Por ejemplo, si hay un pequeño número de muestras, la mala suerte puede concentrarse en las muestras de un área de baja variabilidad, dejando pocos puntos para proporcionar información sobre las zonas de alta variabilidad. Esta estrategia también puede dar lugar a largos tiempos de viaje entre los sitios de muestreo y puede no proporcionar ninguna información en absoluto sobre pequeñas áreas, pero importantes características de los datos.

RELATED STORIES

Tutorial PDF HEC-HMS 4.10: Manual paso a paso en español

Tutorial PDF HEC-HMS 4.10: Manual paso a paso en español

mayo 13, 2025
QGIS 4: Una versión renovada en camino

QGIS 4: Una versión renovada en camino

abril 17, 2025
Muestreo aleatorio.
Una muestra aleatoria simple puedes evitar el sesgo, pero un pequeño número de muestras puede significar que no se tiene una cobertura adecuada de todas las partes de la zona de estudio. En este ejemplo, no hay puntos de muestreo en la hilera de árboles (centro superior del área de estudio), por lo tanto al interpolar, se pierde dicha información.

Es posible aumentar la eficacia de una estrategia de muestreo mediante la estratificación basado en alguna característica que es relevante para la variable de la cual se está tratando de recopilar datos y luego realizar el muestreo sistemático o aleatorio, ya sea dentro de los diferentes estratos. Un ejemplo de la estratificación de un área de estudio podría ser cuando se trata de comprender los patrones de vegetación que se producen en una zona determinada. En este caso, se puede elegir para estratificar el área de estudio basado en zonas de elevación o de aspecto para asegurarse de que recoja muestras de todos los aspectos y todas las elevaciones. La estratificación también puede ayudar a eliminar las situaciones áreas pequeñas, sin embargo, las áreas importantes no lo hacen en la muestra. Por último, si la estratificación del área de estudio basado en una estimación de la cantidad de variabilidad en su atributo de interés, también puede crear de manera efectiva lo que se conoce como una estrategia adaptativa de muestreo – se utiliza un menor número de muestras para las zonas de menor variabilidad y más muestras para áreas de mayor variabilidad.

Estrategias de interpolación.
En este caso, se ha estratificado el área de estudio en dos clases, se coloca al azar un número determinado de puntos (azules) dentro del estrato de mayor variabilidad, las muestras estratificadas sistemáticas son útiles en una cobertura uniforme (puntos rojos). Con esta estrategia, se puede disminuir el intervalo de muestreo en las zonas con alta variabilidad y aumentar el intervalo en las zonas con menor variabilidad.

Trabajo original creado por GEOG 486 – Cartography and Visualization

Compartir:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Tweet
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Más
  • Haz clic para imprimir (Se abre en una ventana nueva) Imprimir
  • Haz clic para compartir en Reddit (Se abre en una ventana nueva) Reddit

Me gusta esto:

Me gusta Cargando...
Next Post
Descargar imágenes satelitales de Sentinel 2A

Descargar imágenes satelitales de Sentinel 2A

Cosas útiles que podemos hacer con un DEM

Cosas útiles que podemos hacer con un DEM

Top

  • Tutorial PDF HEC-HMS 4.10: Manual paso a paso en español
  • Crear e imprimir un mapa directamente en línea con Google Maps
  • ¿Qué es el movimiento de rotación y traslación de la Tierra?
  • Cuadriculas de latitud, longitud y sistema de coordenadas
  • ¿Qué es la latitud y longitud?
  • Generación automática de tablas de coordenadas UTM en AutoCAD y Civil 3D
  • ¿Qué es la ubicación absoluta y relativa?
  • Agregar capas de Google Maps en QGIS 3
  • Descargar Manual de ArcGIS Pro PDF
  • Delimitar una cuenca hidrográfica en ArcGIS

Últimas entradas

  • Tutorial PDF HEC-HMS 4.10: Manual paso a paso en español
  • QGIS 4: Una versión renovada en camino
  • Generación automática de tablas de coordenadas UTM en AutoCAD y Civil 3D
  • Esri se integra con Google Maps en ArcGIS para visualización urbana realista
  • Líneas con Efectos Visuales Avanzados con el Generador de Geometrías en QGIS: Ideal para suavizar curvas de nivel
  • Calcular la Distancia, Área y Coordenadas UTM directamente en Línea
  • TerrSet/IDRISI ahora se llama liberaGIS: es gratis y no necesitas un crack
  • Libro Guía PDF gratis de QGIS

Aplicaciones

  • Calculadora de distancias
  • Calculadora de pendientes
  • Calculadora del Índice de Masa Corporal
  • Conversor de coordenadas Geográficas – UTM
  • Conversor de grados a procentaje
  • Localizador de IPs

Suscríbete al blog

Introduce tu correo electrónico para recibir las últimas publicaciones.

Únete a otros 8.157 suscriptores

RSS ¿Preguntas?

  • Respondido: ¿Cómo puedo citar Arcgeek calculator?
  • Respondido: Dividir un polígono según cobertura del suelo
  • Respondido: Dividir un poligono segun la composición de habitats
  • Respondido: en arcgis como cerrar un polígono de manera automática
  • Respondido: Colindancias entre geometrías en 4 puntos cardinales ArcGIS Pro o QGIS

Blogroll

  • Franz con Z
  • GeoGeek
  • Normas APA
el blog de franz logo

Estadísticas del sitio

  • 12.664.838 visitas
  • Partners
  • Publicidad
  • ¡Ganar dinero!
  • English

© 2024 El blog de franz - Un producto desarrollado por ArcGeek.

No Result
View All Result
  • Cursos SIG
  • ¿Preguntar?
  • Secciones
    • SIG
    • Info
    • Geek
    • Forestal
  • Más
    • Obtener certificado SIG
    • Mapa de Profesionales SIG
    • Convertir UTM Geográficas
    • Calculadora de distancias
    • Localizador de IPs
    • Frases
    • Foro
    • Reglas
    • Donar
  • Acerca
  • Contacto
%d