Entendiendo la interpolación

La interpolación es un proceso que utiliza mediciones realizadas sobre algún fenómeno (precipitación, temperatura o elevación) en determinados lugares, para hacer una predicción sobre un fenómeno en otros lugares donde no se han realizado mediciones. Una razón común es el coste (en tiempo y dinero) que involucra la toma de mediciones. Por ejemplo, hay un número limitado de estaciones meteorológicas que se utilizan para predecir patrones del clima. Aunque sólo se dispone de datos en puntos particulares, es posible predecir el tiempo para todas las ubicaciones dentro de una región, no sólo para aquellos puntos.

La primera ley de Tobler (1970) de la geografía establece: Todos los lugares están relacionados, pero lugares cercanos están más relacionadas que lugares distantes, por ejemplo, si se presenta una intensa precipitación, existe alta probabilidad que a 500 metros también la lluvia sea intensa, pero es menos probable que llueva intensamente a 500 kilómetros, es decir las muestras cercanas tienen valores más similares que las muestras de lugares lejanos.

Es importante comprender que los métodos pueden ser: interpolación desde puntos a otros puntos, líneas, áreas y superficies.

La interpolación de puntos y líneas usa un método lineal. Este método fue utilizado comúnmente por cartógrafos para la creación manual de mapas de isolíneas, la idea básica detrás de interpolación lineal se puede ilustrar con un simple ejemplo matemático. Se puede utilizar una secuencia de valores para predecir valores en los lugares faltantes. Por ejemplo, en la siguiente secuencia fácilmente se puede decir que los valores para completar la serie son 28 y 56.
Interpolación lineal

Aunque los métodos de interpolación lineal fueron desarrollados por primera vez para el análisis de datos de series temporales, se puede aplicar los mismos principios en un contexto espacial, considerando la distancia entre dos puntos. En el siguiente ejemplo, si suponemos que la elevación cambia de forma lineal del punto A al punto B, la isolínea de 27 metros debe pasar a través de un punto de 5/9 de la distancia entre el punto A y el punto B.
Interpolación

Uno de los problemas que pueden ocurrir con interpolaciones lineales se conoce como el punto de silla. En este caso, si hay dos pares de valores diagonalmente opuestos (como las esquinas de un rectángulo), y los valores de dos miembros de una diagonal están por encima y ambos miembros de la otra diagonal están por debajo del valor que se trata interpolar, hay dos posibles soluciones al problema.

 En el problema de punto de silla, utilizamos un promedio de los valores interpolados a partir de pares diagonales de muestras para decidir qué conjunto de isolíneas se puede dibujar.


El problema del punto de silla, radica cuando se usa un promedio de los valores interpolados a partir de pares diagonales de la muestra para decidir el conjunto de isolíneas a dibujar.

La interpolación de áreas utiliza el concepto de polígonos de Thiessen para dibujar límites en torno a las áreas que tienen el mismo valor. Este tipo de interpolador se llama interpolador proximal. Los polígonos de Thiessen también se utilizan como base para generar un TIN. Esta técnica construye polígonos mediante la asignación por cada punto de un área de interés un valor del punto de muestra que sea más cercano. Crea superficies escalonadas, donde los valores pueden cambiar drásticamente en distancias cortas, es decir un valor estimado esta representado dentro del área de cada polígono.

Polígonos de Thiessen

La interpolación de superficies también puede crear continuidad, que varía suavemente en las superficies para representar fenómenos como la elevación, precipitación, temperatura, radiación solar, etc.

Los métodos de interpolación se pueden clasificar como interpoladores globales o locales. En los métodos globales, todos los puntos de muestra se utilizan para determinar la forma de una función matemática que es aplicada a un área de interés. Uno de tales métodos es el análisis de superficie de tendencia, donde un plano es apto para la muestra de datos. Otros interpoladores pueden clasificarse como interpoladores locales. En otras palabras, este tipo de métodos de interpolación sólo utiliza puntos de una muestra que está relativamente cerca de un punto desconocido para estimar el valor del punto desconocido. Interpoladores locales pueden ser parametrizados de diversas maneras, teniendo en cuenta cierto número de puntos más próximos o todos los puntos dentro de una cierta distancia. Por supuesto, todos los interpoladores locales pueden llegar a ser, en efecto, interpoladores globales si se ajustan los parámetros de manera que la zona sea lo suficientemente grande para incluir todos los puntos de muestra. Tanto kriging y la ponderación de distancia inversa son ejemplos de interpoladores locales.

Otro tipo de distinción entre diferentes tipos de métodos de interpolación es entre interpoladores exactos y aproximados. Interpoladores exactos ‘honor’ los datos de muestra. En otras palabras, en la ubicación de un punto de muestra, la superficie interpolada tiene el mismo valor del punto de la muestra original. En interpoladores aproximados, hay un reconocimiento que debido a la medida y de otros tipos de error, la mejor superficie de ajuste no puede pasar directamente a través de todos los puntos de la muestra. Sin embargo, el valor de una superficie aproximada en un punto de la muestra será próximo al valor de la muestra inicial.

Un último tipo de distinción entre los interpoladores que podemos hacer es la determinista frente interpoladores estocásticos. interpoladores determinísticos usan una fórmula matemática para calcular el valor de una ubicación sin muestrear (por ejemplo, el método de ponderación de distancia inversa), mientras que interpoladores estocásticos utilizan la información estadística acerca de los valores de datos de puntos de la muestra y su disposición espacial (es decir, su estructura espacial) para predecir el valor de una ubicación sin muestrear, y la disposición espacial de los valores en una gama de ubicaciones no muestreadas. Dos ejemplos de métodos de interpolación estocásticos son el análisis de superficie kriging y tendencia.

Sin importar el tipo de método de interpolación a usar, hay una serie de factores que pueden afectar a la calidad de los resultados interpolados:

  • Número de puntos de muestreo
  • Ubicación de los puntos de muestreo
  • Los efectos de borde

En general, a mayor número de puntos de muestreo, mayor será la precisión en la superficie interpolada, como es más probable que incluya ubicaciones cuyos valores son importantes para definir la superficie (por ejemplo, los picos y valles de la zona) la definición de la localización. Sin embargo, también existe un compromiso entre el número de muestras que tiene y la cantidad de tiempo que el ordenador necesita para procesar dicha información.

Del mismo modo, la ubicación de los puntos de muestreo puede tener un impacto importante en el resultado final de la interpolación. A menudo, las muestras no se distribuyen de manera uniforme sobre la región de interés, y se pueden predisponer a los lugares donde la recolección de datos es relativamente fácil. Si no hay muestras en una región de alta variabilidad, la superficie interpolada no puede ser muy precisa.

Estrategias de muestreo en la interpolación.

El mapa de la izquierda utiliza una amplia muestra de puntos, probablemente incluye más puntos de los que son necesarios para definir la variabilidad de la precipitación con alta resolución espacial (especialmente en la parte oriental donde hay menos variación). El mapa del medio, utiliza una muestra mucho más pequeña de puntos, pero la interpolación aún es capaz de recoger las principales características de la precipitación. Sin embargo, con una muestra pequeña de puntos (mapa derecho), se pierde mucha información para definir patrones de precipitación en alta resolución, ya que la muestra no incluye puntos en lugares críticos para definir la variabilidad de la precipitación.

Los efectos de borde surgen cuando no hay puntos de muestreo a un lado de una región. Esta falta de muestras puede sesgar la estimación que hace el método de interpolación de una región no incluida en la muestra, lo que lleva a grandes imprecisiones. En otras palabras, el método de interpolación ya no es interpolación (la predicción de valores dentro de una región que falta), pero ahora se está extrapolando (la predicción de los valores en las zonas donde no hay datos de la muestra). Afortunadamente, hay una solución fácil a este problema: siempre asegúrese que cuenta con puntos de muestra fuera de la región para la que desea crear la superficie interpolada, y luego cortar la zona de interés. Este método relegará la mayor parte de la precisión a la zona exterior de los puntos de muestreo, dejando un resultado más preciso dentro del área de interés.

Imagínese que usted está interesado en el área de estudio dentro del cuadro rojo. En el mapa arriba, se puede ver el resultado de la utilización de puntos sólo desde dentro del área de estudio (los puntos azules) para llevar a cabo la interpolación. En el mapa inferior, hemos incluido puntos de dentro y fuera de la zona de estudio (puntos verdes) para la interpolación, y luego a recortar el área que nos interesa (el área dentro de la caja roja). Ambos mapas están simbolizados utilizando el mismo esquema de color y clasificación. Notar cambios en la forma del contorno de precipitación en áreas que están cerca del borde del límite del área de estudio que son el resultado de la inclusión de puntos de datos en todos los lados de todos los puntos de muestreo dentro de la zona de estudio.

El área de estudio se encuentra al interior del cuadro rojo. En el mapa izquierdo, se puede ver el resultado de la interpolación de puntos internos del área de estudio. En el mapa derecho, se ha incluido puntos dentro y fuera de la zona de estudio para la interpolación, luego se puede recortar el área de interés (cuadro rojo). Ambos mapas están simbolizados utilizando el mismo esquema de color y clasificación. Se puede notar los cambios en la forma del contorno en áreas cercanas al borde del límite de la zona de estudio, la no inclusión de puntos externos puede modificar la predicción ejecutada por la interpolación.

Trabajo original creado por GEOG 486 – Cartography and Visualization

franzpc

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Carrito

Últimas publicaciones

  • 5 Tips y sugerencias para clasificar imágenes con el PlugIn SCP en QGIS
  • Crear automáticamente un mapa de uso del suelo en QGIS
  • Dibujando en QGIS con mayor precisión que AutoCAD
  • Identificando y cuantificando cambios del uso de la tierra en línea
  • Monitoreo ambiental online utilizando un Geoportal
  • Manual PDF Prácticas de QGIS
  • Descargar ArcGIS Pro
  • Libro PDF: Teledetección Espacial
  • Diferencias entre un DSM, DEM & DTM
  • ¿Qué son las distancias geodésicas?
  • El GeoAmor mueve millones
  • Limitaciones o desafíos de los SIG

Suscríbete al blog

Introduce tu correo electrónico para recibir las últimas publicaciones.

Únete a otros 433 suscriptores