La interpolación es un proceso que utiliza mediciones realizadas sobre algún fenómeno (precipitación, temperatura o elevación) en determinados lugares, para hacer una predicción sobre un fenómeno en otros lugares donde no se han realizado mediciones. Una razón común es el coste (en tiempo y dinero) que involucra la toma de mediciones. Por ejemplo, hay un número limitado de estaciones meteorológicas que se utilizan para predecir patrones del clima. Aunque sólo se dispone de datos en puntos particulares, es posible predecir el tiempo para todas las ubicaciones dentro de una región, no sólo para aquellos puntos.
La primera ley de Tobler (1970) de la geografía establece: Todos los lugares están relacionados, pero lugares cercanos están más relacionadas que lugares distantes, por ejemplo, si se presenta una intensa precipitación, existe alta probabilidad que a 500 metros también la lluvia sea intensa, pero es menos probable que llueva intensamente a 500 kilómetros, es decir las muestras cercanas tienen valores más similares que las muestras de lugares lejanos.
Es importante comprender que los métodos pueden ser: interpolación desde puntos a otros puntos, líneas, áreas y superficies.
La interpolación de puntos y líneas usa un método lineal. Este método fue utilizado comúnmente por cartógrafos para la creación manual de mapas de isolíneas, la idea básica detrás de interpolación lineal se puede ilustrar con un simple ejemplo matemático. Se puede utilizar una secuencia de valores para predecir valores en los lugares faltantes. Por ejemplo, en la siguiente secuencia fácilmente se puede decir que los valores para completar la serie son 28 y 56.
Aunque los métodos de interpolación lineal fueron desarrollados por primera vez para el análisis de datos de series temporales, se puede aplicar los mismos principios en un contexto espacial, considerando la distancia entre dos puntos. En el siguiente ejemplo, si suponemos que la elevación cambia de forma lineal del punto A al punto B, la isolínea de 27 metros debe pasar a través de un punto de 5/9 de la distancia entre el punto A y el punto B.
Uno de los problemas que pueden ocurrir con interpolaciones lineales se conoce como el punto de silla. En este caso, si hay dos pares de valores diagonalmente opuestos (como las esquinas de un rectángulo), y los valores de dos miembros de una diagonal están por encima y ambos miembros de la otra diagonal están por debajo del valor que se trata interpolar, hay dos posibles soluciones al problema.
La interpolación de áreas utiliza el concepto de polígonos de Thiessen para dibujar límites en torno a las áreas que tienen el mismo valor. Este tipo de interpolador se llama interpolador proximal. Los polígonos de Thiessen también se utilizan como base para generar un TIN. Esta técnica construye polígonos mediante la asignación por cada punto de un área de interés un valor del punto de muestra que sea más cercano. Crea superficies escalonadas, donde los valores pueden cambiar drásticamente en distancias cortas, es decir un valor estimado esta representado dentro del área de cada polígono.
La interpolación de superficies también puede crear continuidad, que varía suavemente en las superficies para representar fenómenos como la elevación, precipitación, temperatura, radiación solar, etc.
Los métodos de interpolación se pueden clasificar como interpoladores globales o locales. En los métodos globales, todos los puntos de muestra se utilizan para determinar la forma de una función matemática que es aplicada a un área de interés. Uno de tales métodos es el análisis de superficie de tendencia, donde un plano es apto para la muestra de datos. Otros interpoladores pueden clasificarse como interpoladores locales. En otras palabras, este tipo de métodos de interpolación sólo utiliza puntos de una muestra que está relativamente cerca de un punto desconocido para estimar el valor del punto desconocido. Interpoladores locales pueden ser parametrizados de diversas maneras, teniendo en cuenta cierto número de puntos más próximos o todos los puntos dentro de una cierta distancia. Por supuesto, todos los interpoladores locales pueden llegar a ser, en efecto, interpoladores globales si se ajustan los parámetros de manera que la zona sea lo suficientemente grande para incluir todos los puntos de muestra. Tanto kriging y la ponderación de distancia inversa son ejemplos de interpoladores locales.
Otro tipo de distinción entre diferentes tipos de métodos de interpolación es entre interpoladores exactos y aproximados. Interpoladores exactos ‘honor’ los datos de muestra. En otras palabras, en la ubicación de un punto de muestra, la superficie interpolada tiene el mismo valor del punto de la muestra original. En interpoladores aproximados, hay un reconocimiento que debido a la medida y de otros tipos de error, la mejor superficie de ajuste no puede pasar directamente a través de todos los puntos de la muestra. Sin embargo, el valor de una superficie aproximada en un punto de la muestra será próximo al valor de la muestra inicial.
Un último tipo de distinción entre los interpoladores que podemos hacer es la determinista frente interpoladores estocásticos. interpoladores determinísticos usan una fórmula matemática para calcular el valor de una ubicación sin muestrear (por ejemplo, el método de ponderación de distancia inversa), mientras que interpoladores estocásticos utilizan la información estadística acerca de los valores de datos de puntos de la muestra y su disposición espacial (es decir, su estructura espacial) para predecir el valor de una ubicación sin muestrear, y la disposición espacial de los valores en una gama de ubicaciones no muestreadas. Dos ejemplos de métodos de interpolación estocásticos son el análisis de superficie kriging y tendencia.
Sin importar el tipo de método de interpolación a usar, hay una serie de factores que pueden afectar a la calidad de los resultados interpolados:
- Número de puntos de muestreo
- Ubicación de los puntos de muestreo
- Los efectos de borde
En general, a mayor número de puntos de muestreo, mayor será la precisión en la superficie interpolada, como es más probable que incluya ubicaciones cuyos valores son importantes para definir la superficie (por ejemplo, los picos y valles de la zona) la definición de la localización. Sin embargo, también existe un compromiso entre el número de muestras que tiene y la cantidad de tiempo que el ordenador necesita para procesar dicha información.
Del mismo modo, la ubicación de los puntos de muestreo puede tener un impacto importante en el resultado final de la interpolación. A menudo, las muestras no se distribuyen de manera uniforme sobre la región de interés, y se pueden predisponer a los lugares donde la recolección de datos es relativamente fácil. Si no hay muestras en una región de alta variabilidad, la superficie interpolada no puede ser muy precisa.
Los efectos de borde surgen cuando no hay puntos de muestreo a un lado de una región. Esta falta de muestras puede sesgar la estimación que hace el método de interpolación de una región no incluida en la muestra, lo que lleva a grandes imprecisiones. En otras palabras, el método de interpolación ya no es interpolación (la predicción de valores dentro de una región que falta), pero ahora se está extrapolando (la predicción de los valores en las zonas donde no hay datos de la muestra). Afortunadamente, hay una solución fácil a este problema: siempre asegúrese que cuenta con puntos de muestra fuera de la región para la que desea crear la superficie interpolada, y luego cortar la zona de interés. Este método relegará la mayor parte de la precisión a la zona exterior de los puntos de muestreo, dejando un resultado más preciso dentro del área de interés.
Trabajo original creado por GEOG 486 – Cartography and Visualization